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A bstract 

The source strengths of the Euler-Lagrange equations, for a system of interacting fields, are 
heuristically interpreted as generalized forces. The canonical form of the energy-momentum 
tensor thus consistently appears, without recourse to space-time symmetry arguments, A 
concept of "conservative" generafized force in classical field theory is also briefly discussed. 

1. In troduct ion  

The purpose of this note is to present a simple derivation of the canonical 
form of" the energy-momentum tensor in the classical theory of fields, without 
recourse to symmetry arguments fi la Noether (1918). 1 Rather, as a guiding 
principle adopted to this end, one establishes an heuristic analogy with ordinary 
analytical mechanics. For the sake of concreteness, we present the issue for 
Lorentz covariant field theory, z albeit such restriction is not necessary for the 
following formalism to hold. 

2. The Source Strength as Generalized Force 

In relativistic linear field theory one usually describes a system of two inter- 
acting fields, say QA (x)  and qa(x),  with A = 1 . . . . .  N ,  a = 1 , . . . ,  n, and 
where x = (xU) = (x o, x 1 , x 2 , x3) ,  by adopting a total Lagrangian density of 
the form 

L(QA ., qa; Q,~; qa,•) = LQ(QA ; Q~,~z) + Lq(q  a ; qa, t~) 

+ g e q ( O A .  Q~.t a a , , u ; q  ; q , u )  (2.1) 

1A brief historical review on Noether's theorem can be found in Schr6der (1968); a 
sirnphfied account is presented by Hill (1951). See also Rosen (1971). On the inversion 
of the theorem, see Candotti et al. (1970, 1972). An interesting generalization of 
Noether's theorem has been recently published by Rosen (t974a, 1974b). 

2 See, for instance, Bogoulioubov & Chirkov (1960), Chap. I. 

© 1976 Plenum Publishing Corporation. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written 
permission of the publisher, 

81 



82 J. KRAUSE 

where, clearly, LQ and Lq are free field Lagrangians, and LQq denotes the 
interaction Lagrangian. The corresponding Euler-Lagrange field equations are 
of the form 3 

OLQ/OQ A - (D/DxU)(OLQ/OQ~,~) = --FA (QA ; Q~,u; qa; qa,#) (2.2a) 

OLq/~q a - (D/Dx~)(OLq/~qa#) = F, r a a - a [ q  ;q,u; QA ;QC, u) (2.2b) 

These equations are coupled through the inhomogeneity terms containing the 
sources of the fields, which are given by 

FA : OLQq /3Q A - (D/DxU)(OZQq/OQC, u) (2.3a) 

Fa = OLQq /Oq a - (D/DxU)( OLQq/Oqa#) (2.3b) 

As is welt known, in analytical mechanics one introduces a Lagrangian 
L(qi, ~i, t) = T(q i, ~i) _ U(qi, ~i, t), describing a system with fdegrees of 
freedom, i = 1 . . . .  ,f ,  where the kinetic energy term T corresponds to the 
free Lagrangian, Lq = T, while the generalized potential Ugives us the inter- 
action Lagrangian, i.e., Lqu  = - U .  The equations of motion for such a system 
are 

OT/Oq i - (d/dt)(OT/O(l i) = aU/Oq i - (d/dt)(OU/O(1 i) = - F i  

where the Fi's are the generalized forces. Accordingly, in the analytical theory 
of fields we interpret the source strengths FA and Fa as generalized force 
densities; namely FA corresponds to the generafized force(density) acting 
locally on the field QA (x), due to the presence of the field qa(x) in the neigh- 
borhood of of the event x. A similar statement holds for Fa, mutatis mutandi. 
The Q field evolves under the influence of the force density FA in such a 
manner that, as it changes from QA (x) to QA (x + dx) = QA (x) + dQ A (x), say, 
a "work" is performed locally on the field according to the following definition 
(whose pattern we borrow from analytical mechanics): 

dWQ = FA dQ A = FA ~ dx u (2.4a) 

In the same manner, we also write 

dwq = Fa dq a = Faq,au dx u (2.4b) 

for the "work" performed on the q field. It is clear that the main difference 
between the concept of "work" in particle dynamics and in field theory stems 
from the fact that in the discrete case the displacement dxU is tangent to the 
particle's world-line, while in the continuous case dxU is a completely arbitrary 
world-displacement. Hence the path integrated "work" has no physical meaning 
in field theory. Nevertheless, the differentials dw have a simple local meaning. 
We will come back to this point presently. 

3 In this note we are using the concept of  partial derivative with respect to the independent 
variables x ~ when the state functions and their gradients have been substituted as 
functions of the independent variables. Following Hill (1951), we use the symbol D/Dx # 
to denote the partial derivatives defined in this sense. 
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Let us now introduce the four-fource densities acting on the fields. Following 
the pattern of analytical mechanics, these we define as 

fu(Q) = FA ~ , .  (2.5a) 

fu(q) = Faqa, u (2.5b) 

Next we consider the total four-force (on the Q field) developed by the inter- 
action, over a simple connected region R of space-time, namely, 

Fu(Q ) = f d4xfu(Q)= f d4xUA QA (2.6) 
R R 

It is clear that, in order for the proposed interpretation to be valid at all, the 
presence of this four-force must be related to the total change in linear four- 
momentum pertaining to the Q field over the region R. This is, indeed, the 
case, for using equations (2.1) and (2.2) we have, after some manipulations, 4 

Ft~(Q ) = f d4x [OLoq/OQA _ (D/DxV)(OLQq/OQ,Av)] QA 
R 

~= _ f d4x [OLQ/OQA _ (D/DxV)(OLQ/OQA)] QA 
R 

= f d4x(D/Dxv) [(OLQ/aQ~)Q A - Burro] 
R 

= f day [(~LQ/OQA)Q~ - 8#VLQ] (2.7) 
8 R  

where 6R denotes the boundary of R. So we get, on the orbit, 

Fu(Q)g f d4xT~,v(Q) = f dovr#v(Q) (2.8) 
R 8 R  

with 
T~(Q) = (aLQ /OQ~,v)Q~,u - 6VuLQ (2.9) 

as it should be. F~uation (2.8) represents the global force equation, while 
from (2.6) and (2.8) the local force equation, i.e., the four-force density 
equation, readily obtains 

T~,v(Q) g f~(Q) (2.10) 

The Lagrangian formalism has a well-known gauge freedom, since the 
Lagrangian density used in the variational integral which will lead to a given 
set of Euler-Lagrange field equations is not unique. In effect, the most general 
gauge transformations of the Lagrangian density which leave the field equa- 
tions form invariant correspond (of necessity and sufficiently) to s 

L' = L + (D/Dx,U)GU(Q A ; qa) (2.1 t) 

4 The symbol g is used for an equality holding "along the orbi t ,"  i.e., once the Euter-  
Lagrange field equations have been used in order to obtain that  equality; thus, the 
symbol g denotes what is generally called a "weak"  equality. See Candotti  et al. (1970). 

s Courant and Hilbert (1953), Vol. 1, pp. 193-196. See also Hill (1951). 
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where L is given in (2.1), say. 6 Since the arbitrary gauge functions GU do not 
depend on the gradient of the fields, we easily conclude that the generalized 
forces presented in equations (2.3), as well as the corresponding four-force 
densities defined in equations (2.5), are gauge invariant quantities under (2.11). 
In particular, we observe that the four-force density equation (2.10) is gauge 
invariant, notwithstanding the fact that the canonical tensor Tu v is a gauge- 
dependent object. We wish to remark this point here, for it seems that gauge 
invariance under (2.11) is a very natural requirement for having a well-defined 
physically meaningful object. In this sense, we also wish to remark that the 
canonical T~ v tensor participates in the dynamics (via Gauss' theorem) only 
through its divergence T~,v, i.e., a gauge invariant quantity, as it should be. 

3. "'Conservative" Generalized Forces 

Using the same kind of arguments followed in the previous section, it is 
easy to prove that for the total system we have 

V . T /) Tu (Q, q) = ~, (Q) + TuV(q) + (3LQq/OQ~,v)Q A 

a a + (~LQq/Oq,v)q,u - ~ l ~ V L Q q  (3.1) 

where now the total energy-momentum conservation law holds, i.e., 

T~,v(Q; q) = 0 (3.2) 

Hence we obtain the local force equation for the total (closed) system in the 
form 

FA Q,A + FaQ~,u + (D/DxV){(OLQq/OQA)Q A +(OLoq/Oq%)qa, u -SuVLoq} = 0 

(3.3) 

and therefore the following "energy" density relation holds locally: 

dWQ + dwq + dUQq = dWQq (3.4) 

Here we have defined, in the usual way, 

dUQq = -dLQq (3.5) 

as the (analog of the) change in "potential energy" density of the system, and 

dWQq = -dxU(D/DxV)[(OLQq/OQI)Q A + (OLQq/Oqa, v)qa, u] (3.6) 

Thus, the necessary and sufficient condition for the "energy" density con- 
servation law to hold locally, namely, to have 

dwQ + dwq + dUQq = 0 (3.7) 

6 To be sure, in equation (2.11) we have omitted an arbitrary multiplicative constant on 
L, for such scale transformations of the Lagrangian density bear no interest in the 
present work. 
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is that the expression in equation (3.6) vanish identically for arbitrary space- 
time displacements, i.e., 

~) a a (D/DxV)[ (~LQq/OQA)Q A + (3LQq / q,v)q,v] = 0 (3.8) 

Here we face a situation that is quite reminiscent of what we know from 
ordinary analytical mechanics concerning nonconservative forces derivable 
from a generalized potential. For instance, let us formally consider a two-particle 
system represented by the Lagrangian 

L = (m/2)~ 12 + (m'/2)5~22 _ U(Xl ' Xl, x2, x2) (3.9) 

For such a system, the following energy relation readily obtains: 

d w  1 + d w  2 + d U  = d W  = a t  { [(d/dt)(OU/Oi(,)] " ~ I + [(d/dt)(3U/O5~2)] "x2}  

(3.10) 

where, clearly, the dw's  are d w  = d(rn~ 2/2).  Hence, the interaction is not a 
conservative one, unless the expression for d W  vanishes for arbitrary dt.  Ac- 
cordingly, in classical field theory we may state that equation (3.8) represents 
a necessary and sufficient condition for the generalized forces (due to the Zoq 
interaction) to be "conservative" forces, in the sense that a conservation law 
for the "energy" density of the total system holds locally, Obviously, we can- 
not claim a clear and unique physical meaning for the dWQq t e r m  in classical 
field theory, as there is no clear unique meaning for the d W  term in ordinary 
analytical mechanics. Clearly so, for these terms depend quite generally on 
the kind of nonconservative interaction involved. 

There is an important difference, however, between both contexts, for in 
analytical mechanics a discrete system behaving as in equations (3.9) and (3.10) 
is usually regarded as an open system (i.e., an incomplete description of a closed 
one). In this manner we rescue the physical law of (total) energy conservation. 
On the other hand, in the heuristic approach to classical field theory a system 
behaving as in (2.1) and (3.4) is nevertheless regarded as closed (i.e., a complete 
system). In effect, the conservation law of real physical interest for field theory 
is stated in equation (3.2). Thus, we do not claim the heuristic analogy we are 
discussing in this paper to be perfect .  Due caution is needed, of course, in 
order to explore field theory while adopting the formal "mechanistic" stand- 
point. 7 

Finally, we comment that a glance at equation (3.4) may tempt us to think of 
the dWQq t e r m  as the field's "heat" produced by the interaction, and since a 
field theoretic concept of "heat" is clearly untenable one would conclude that 

7 For instance, one may tickle the argument and observe that ,  sensu stricto, according 
to equation (3.6), the analytical mechanic analog to dWQq would be formally given by  
d W' = dt(d/dt) [(a U/ ~  1)" ~I + (0 U/05~ 2)" :~2 ], and not  by  dW, for t is the independent  
variable in analytical mechanics, as are the  xV's in field theory.  It seems that  one should 
not push the analogy that  far, since according to this t ~ x # argument, the analog to the 
total  Tf~V(Q; q) tensor would be the total  Hamiltonian H = T1 + T2 + U. But then,  the 
analog to equation (3.2) would be dH/dt = O, which does not hold quite generally in 
analytical mechanics; while (3.2) is quite general in classical field theory. 
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dl, I]Qq must  be an exact differential. 8 It must be borne in mind, however, as 
we have already remarked in Section 2, that the path integrated "work"  has no 
cogent physical meaning in the theory of fields and, hence, there is no need to 
impose integrability conditions on dWQq. 

4. Conclusion 

We observe that these field forces are not due to a direct action of  one field 
on the other, for such "contact"  forces would require dwQ + dwq = O, which 
is not the case if there is an interaction at all. These forces manifest themselves 
locally through the interaction compartment, represented by the t e r m  LQq in 
the total Lagrangian, in much the same manner as the interaction forces in a 
system of, say, two particles connected by a spring. Thus, for instance, if for 
some dxU we have dwQ > O, we interpret this as a local transfer o f  energy 
density from the interaction compartment to the Q field. 

We conclude that the interpretation o f  the source strengths as generalized 
forces is consistent with the well-known dynamical meaning of  TuV(Q) as the 
energy-momentum transport tensor of the Q field. In this way one obtains the 
usual canonical form of this tensor without recourse to Noether's theorem. 
Finally, while from the standpoint o f  the canonical theory of  fields, Noether's 
(first) theorem clearly plays a very central role in the formalism, we wish to 
remark, however, that once the canonical form of  the Tg v tensor has been 
obtained along the usual space-time symmetry arguments, it is interesting to 
be able to grasp its dynamical meaning directly by analogy with ordinary 
analytical mechanics. 
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